Tekrarlamalı Gauss-Seidel Algoritması ile İşaret Modelleme

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paving the Randomized Gauss-Seidel

The Randomized Gauss-Seidel Method (RGS) is an iterative algorithm that solves overdetermined systems of linear equations Ax = b. This paper studies an update on the RGS method, the Randomized Block Gauss-Seidel Method(RBGS). At each step, the algorithm greedily minimizes the objective function L(x) = kAx bk2 with respect to a subset of coordinates. This paper describes a Randomized Block Gauss...

متن کامل

Parallel Multigrid Smoothing: Polynomial versus Gauss-seidel

Gauss-Seidel method is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for po...

متن کامل

Self-adaptive Extrapolated Gauss-Seidel Iterative Methods

In this paper, we consider a self-adaptive extrapolated Gauss-Seidel method for solving the Hermitian positive definite linear systems. Based on optimization models, self-adaptive optimal factor is given. Moreover, we prove the convergence of the self-adaptive extrapolated Gauss-Seidel method without any constraints on optimal factor. Finally, the numerical examples show that the self-adaptive ...

متن کامل

The Gauss-seidel Fast Affine Projection Algorithm

In this paper we propose a new stable Fast Affine Projection algorithm based on Gauss -Seidel iterations (GSFAP). We investigate its implementation using the logarithmic number system (LNS) and compare it with other two FAP algorithms. A method to simplify its implementation is also proposed. We show that the 32-bit or 20-bit LNS implementation of the GSFAP algorithm is superior to those of oth...

متن کامل

Breaking Locality Accelerates Block Gauss-Seidel

Recent work by Nesterov and Stich (2016) showed that momentum can be used to accelerate the rate of convergence for block GaussSeidel in the setting where a fixed partitioning of the coordinates is chosen ahead of time. We show that this setting is too restrictive, constructing instances where breaking locality by running non-accelerated Gauss-Seidel with randomly sampled coordinates substantia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Academic Perspective Procedia

سال: 2020

ISSN: 2667-5862

DOI: 10.33793/acperpro.03.01.116